Suppressor of Fused Is Required for Determining Digit Number and Identity via Gli3/Fgfs/Gremlin

نویسندگان

  • Jianying Li
  • Qihui Wang
  • Ying Cui
  • Xueqin Yang
  • Yan Li
  • Xiaoyun Zhang
  • Mengsheng Qiu
  • Ze Zhang
  • Zunyi Zhang
  • Moises Mallo
چکیده

The anterior-posterior patterning of the vertebrate limb bud requires closely coordinated signaling interactions, including Sonic Hedgehog (Shh)-mediated counteraction of the Gli3 transcription factor in the distal and posterior mesenchyme of the limb bud. Suppressor of Fused (Sufu), an intracellular negative regulator of Shh signaling via Gli2 and Gli3, is implicated in early development of the mouse limb bud. However, how Sufu is involved in the genetic regulation of limb bud patterning still remains elusive. In this study, we show that the conditional deletion of Sufu in the mesenchyme of the early limb bud results in polydactyly with loss of digit identity and supernumerary bones in the wrist and the ankle. These pattern alterations are associated with anterior expansion of HoxD genes located at the 5' end of the cluster. By focusing on gene expression analysis of Shh/Gremlin1/Fgf signaling critical for the establishment and maintenance of anterior-posterior patterning, we show that early response to loss of Sufu involves anterior prolongation of Fgf4 and Fgf8 expression in the apical ectodermal ridge at E10.5. We also reveal the anterior activation of Shh-dependent posterior markers Ptc1, Gli1 and Gremlin in limb buds lacking Sufu. Furthermore, we find that loss of Sufu leads to attenuated levels of repressor Gli2 and repressor Gli3 in the early limb bud. Moreover, expression of Hand2 is activated in the entire limb bud at the early outgrowth stage in the mutant lacking Sufu. Thus, we provide evidence that Sufu is involved in the genetic network that restricts the posterior expression of Gli2/3/Hand2 and Gremlin/Fgf in limb bud patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh.

Sonic hedgehog (Shh) signaling regulates both digit number and identity, but how different distinct digit types (identities) are specified remains unclear. Shh regulates digit formation largely by preventing cleavage of the Gli3 transcription factor to a repressor form that shuts off expression of Shh target genes. The functionally redundant 5'Hoxd genes regulate digit pattern downstream of Shh...

متن کامل

An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Gli3 antagonism

The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no ge...

متن کامل

The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins.

The transcriptional program orchestrated by Hedgehog signaling depends on the Gli family of transcription factors. Gli proteins can be converted to either transcriptional activators or truncated transcriptional repressors. We show that the interaction between Gli3 and Suppressor of Fused (Sufu) regulates the formation of either repressor or activator forms of Gli3. In the absence of signaling, ...

متن کامل

Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number a...

متن کامل

Polydactyly: phenotypes, genetics and classification

Polydactyly is one of the most common hereditary limb malformations featuring additional digits in hands and/or feet. It constituted the highest proportion among the congenital limb defects in various epidemiological surveys. Polydactyly, primarily presenting as an additional pre-axial or post-axial digit of autopod, is a highly heterogeneous condition and depicts broad interand intra-familial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015